
Low Density Parity Check (LDPC) codes were introduced
by Robert G. Gallager in 1963 in his doctoral thesis [1] and
since 1990s LDPC codes have been used in different com-
munication standards. Hardware implementations are usually
preferred, due to the high processing requirements of LDPC
decoding. In software-defined radio systems FPGAs offer
the flexibility and high processing power required to make
implementations feasible. The proliferation since the 1980s of
RTL (Register Transfer Level) language standards for digital
design in combination with automatic tools for logic synthesis
and implementation have promoted design productivity. Design
tools such as Xilinx VivadoTM HLS permit hardware design at
an even higher abstraction level and promise to further increase
design productivity.

In this paper we show how Xilinx VivadoTM HLS can be
used to implement an LDCP decoder for IEEE 802.11n. The
paper is organized as follows. Section II gives an overview
of the LDPC decoding algorithm. Section III presents the
IEEE 802.11n LDPC structure, the decoder architecture and
the implementation method. In section IV we give the resulting
throughput of the decoder, the performance of decoder in terms
of bit error ratio (BER) as a function of Eb/N0 and the FPGA
resources required by the LDPC decoder.

We define N as the length of a codeword x, K as the
number of the information bits and M = N −K the number
of redundancy bits in the codeword. LDPC codes are defined
by their parity check matrix H - a sparse M × N matrix,
satisfying the equation

Hx = 0 (1)

for each codeword x.

Optimal, maximum a-posteriori decoding of LDPC codes is
a practically unfeasible problem. As an alternative an iterative
belief propagation algorithm is used that allows decoding close
to the Shannon limit. The LDPC decoding algorithm runs on
a bipartite graph, with M edges corresponding to each parity
check equation, called check nodes, and N edges correspond-
ing to each component of a codeword, called variable nodes.
The vertices connect variable and check nodes according to
the equations defined by the parity check matrix.

The inputs to the decoding algorithm are log-likelihood
ratios (LLR) for each variable node, as defined in equation
(2), where xn are the components of the sent codeword and
yn are the received values.

Ln = ln
P{xn = 1|yn}
P{xn = −1|yn}

= ln
1 + En

1− En
(2)

Parity check equations allow the calculation of extrinsic
log-likelihood ratios for each factor in the equation. LetM(m)
be the set of indices of the variable nodes connected to the
m-th check node, then it can be shown that equation (3) holds,
where the values E are the expectation of xn conditioned on
yn.

Eext
j∈M(m) =

∏
i∈M(m)/j

Ei (3)

In Fig. 1 the expectation E is plotted as a function of the
LLR L. The magnitude of the expectation is subunitary and a
value close to zero denotes high uncertainty in the value of the
variable, while a value close ±1 low uncertainty. According to
equation (3), the sign of the extrinsic value Eext is given by
the product of the signs of all the contributing factors Ei. The
certainty given by Eext is smaller than any certainty of an any
input factor. The messages sent between check and variable
nodes in the decoding process are LLRs. To avoid converting
between LLRs and expectations the approxiamtion given by
equation (4) is used. The certainty of Eext will be given by
the lowest certainty among the input values E. In equation (4)

Implementation of an LDPC decoder for IEEE

802.11n using VivadoTM High-Level Synthesis

ERNEST SCHEIBER, GUIDO H. BRUCK, PETER JUNG

Department of Communication Technologies

University of Duisburg-Essen

Duisburg, Oststr. 99, GERMANY

Email: ernest.scheiber@uni-due.de

Abstract—The increasing complexity of hardware designs calls for design methodolgies that use more abstract

design entries and increased automation of the implementation process. Highlevel synthesis (HLS) has been a

research topic for the past 20 years, and current tools, such as Xilinx VivadoTM HLS promise to bring HLS to

widespread use. In this paper we use Xilinx VivadoTMHLS to design an LDPC decoder for 802.11n. Forward

error correction decoders are typically implemented in hardware due to the high processing requirements and

therefore an LDPC decoder is an appropriate example to demonstrate the power of high-level synthesis.

 Keywords—High-level synthesis, FPGA, LDPC, IEEE 802.11n

1. Introduction

2. Technology Overview
2.1. Low Density Parity Check Codes

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC
DOI: 10.37394/232019.2021.8.1 Ernest Scheiber, Guido H. Bruck, Peter Jung

E-ISSN: 1109-9577 1 Volume 8, 2021

L

E

+1

-1

certain

certain

uncertain
L1 L2

E1

E2

Fig. 1. The expectation E as a function of the log-likelihood ratio L

cmn and vim are the check node message from check node
m to variable node n and the variable node message from
variable node i to check node m, respectively.

cmn =
∏

i∈M(m)/n

sgn{vim} min
i∈M(m)/n

|vim| (4)

Variable nodes combine the extrinsic information from the
check nodes and the input LLRs to generate messages for
check nodes in the next iteration according to equation (5).

vnm = Ln +
∑

i∈N (n)/m

cmn (5)

The decoding algorithm alternates between stages of check
node processing and variable node processing until all parity
check equations are satisfied or until the maximum number of
iterations has been reached.

Since the 1980s RTL based design has been the preferred
method of design of digital systems. Further productivity gains
are facilitated by design reuse through the proliferation of
IP (Intellectual Property) cores. Beginning with the 1990s
research was conducted on high-level synthesis i.e. hardware
design that abstracts more details of the underlying hardware
and allows programmers to focus on algorithm development
in a C-like programming language. While in the past 20 years
HLS design has not seen widespread adoption, design tools
have improved to change that [2].

VivadoTM HLS is a Xilinx tool that introduces HLS design
to Xilinx FPGAs. The design input is C,C+ or SystemC
code. Design directives guide the synthesis process. Design
directives can refer to loops, interfaces, arrays etc. The user
directs the synthesizer to pipeline or unroll loops, defines
interface types and partitions and reshapes arrays to maximize
throughput. The output of Vivado HLS is synthesizable Ver-
ilog, VHDL and SystemC code that can be used to implement
the design in hardware [3].

IEEE 802.11n defines three LDPC code lengths (648, 1296,
1944) and four code rates (1/2, 2/3, 3/4, 5/6) for a total of 12
possible codes [4]. Each code is defined by a parity check

0
22

- - - 0 0 - - 0 - - 0 01 - - - - - - - - - -
0 - - 17 - 0 0 12 - - - - 0 0 - - - - - - - - -

0 0 - - - - - - - -
0 0 - - - - - - -

0 0 - - - - - -
0 0 - - - - -

0 0 - - - -
0 0 - - -

0 0 - -
0 0 -

0 0
0

- -
-
-
-
0
-
-
-
-
1 - - - - - - - - - -

- - - - - - - - -
- - - - - - - -
- - - - - - -
- - - - - -
- - - - -
- - - -
- - -
- -

0 -
- 0

- - -

6
2

-
-

23
24
25
13
7
11
25
3

10
20
3
17
8
0
22
19
23
16

- 23 1
- - -

- - -

- - -
- 8 -

20 - 16
24 - -

-
-

11
-
-
-
-

17
-
-

0
-
9
-
-
-
-
3
-
-

-
0
-
-

18

5
-
-
-
-

24
25
0
10
7
6
23
13
9
25

- - -
- - -
- - -
- 3 -
- - -
- 8 -

10 - -
- - -

18 - 14
2- -

Fig. 2. Parity check matrix for code length 648 and rate 1/2

CNP

LLR inputsLLR from VNP

RAM
p

RAM
c

Fig. 3. Check node processor

matrix that is formed out of square submatrices of size 27, 54
or 81 for the three defined code lengths. In Fig. 2 the parity
check matrix for length 648 and code rate 1/2 is given. Each
entry in the table represents a 27 by 27 square matrix, where 0
represents the identity matrix and any other number represents
a cyclic shift to the right of the identity matrix by a number
of places equal to the number. A horizontal bar represents an
all zero matrix.

The hardware architecture of the LDPC decoder follows the
blueprint defined in [5]. In Fig. 3 the structure of a check node
processor (CNP) is depicted. There are 12 CNPs, operating
in parallel, used for decoding the rate 1/2 code. Each CNP is
responsbile for a row of parity check equations from the matrix
defined in Fig. 2. For each parity check equation the CNP
computes the two minimum absolute value of the input LLRs,
the index of the minimum absolute value LLR, the XOR of all
the signs of the input LLRs and stores the sign of each input
LLR. Each CNP uses two separate RAMs, as depicted in Fig.
3, RAM c is used to store the results of the current iteration
while RAMp holds the results of the previous iteration.

The CNP operates in the first iteration on the input LLRs
and on the LLRs computed by the variable node processor
(VNP) in all subsequent iterations. The CNP uses RAMp,
holding the results of the previous iteration, to adapt the
messages to each variable node according to equation (5) by
substracting the term corresponding to the destination check
node.

The VNP iterates through all variable nodes, selects the
appropriate message out of each of the 12 RAMs holding the
results of the CNPs and together with the input LLRs adds

2.2. High-Level Synthesis with

 Xilinx VivadoTM HLS

3. Decoder Implementation
3.1. IEEE 802.11 LDCP codes

3.2. Decoder architecture

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC
DOI: 10.37394/232019.2021.8.1 Ernest Scheiber, Guido H. Bruck, Peter Jung

E-ISSN: 1109-9577 2 Volume 8, 2021

RAM
p

VNP

RAMLLR

LLR to CNP

Fig. 4. Variable node processor

CNP

VNP

RAM copy

iteration #1 iteration #2 iteration #3

init RAM

Fig. 5. Scheduling of operations for LDPC decoding

them all up. The results of the VNP flow directly into the
CNP for the next iteration.

The scheduling of operations in the decoding process are
depicted in Fig. 5. The RAMs used for the results of the
CNPs are initialized before the decoding of each block. Each
iteration has three stages: CNP processing, copying of data
from RAM c to RAMp and reinitialization of RAM c, and
finally VNP procesing. The VNP processing of an iteration
and the CNP of the next iteration run in parallel such that the
computed LLRs from the VNP are fed directly into the CNPs.

In the following a pseudo code of the main body of the
implementation of the decoder is given. Some details are
omitted to highlight the essential steps. The code is structured
so as to generate the scheduling of operations as depicted in
Fig. 5.

1: Init RAMp, RAM c

2: for iter = 0 to no iter do
3: for n = 0 to 647 + 27 do
4: nb = n/27, ni = n%27
5: // VNP
6: if (iter > 0)&&(nb < 24) then
7: for cb = 0 to 11 do
8: shift← P [cb][nb]
9: ic ← var to check(ni, shift)

10: cm[cb]←CM(RAMp[cb][ic])
11: end for
12: v[ni]← LLR[n] +

11∑
cb=0

cm[cb]

13: end if
14: // CNP
15: if (iter < no iter)&&(nb > 0) then
16: for cb = 0 to 11 do
17: shift← P [cb][nb]

18: iv ← check to var(ni, shift)
19: vupd ← vm[iv]−CM(RAMp[cb][ni])
20: UpdateRAM(vupd, RAM c[cb][ni])
21: end for
22: end if
23: // Pass data from VNP to CNP
24: if (iter == 0)&&(nb < 24) then
25: vm[ni]← LLR[n]
26: end if
27: if (iter > 0)&&(nb < 24)&&(ni == 26) then
28: for iv = 0 to 26 do
29: vm[iv]← v[iv]
30: end for
31: end if
32: end for
33: // RAM copy
34: RAMp ← RAM c

35: Init RAM c

36: end for

The main loop (line 2) performs the maximum predefined
number of iterations of the decoder: no iter. The loop itself
runs no iter+1 times, since in the first iteration only the CNP
is run and in the last iteration only the VNP (see Fig. 5). The
loop starting at line 3 iterates through all the variable nodes
n. Similarly to the main loop, this loop, too goes beyond the
number of variables (i.e. 648) by the 27 (i.e. the length of one
block in the parity check matrix). This accounts for the delay
between the VNP processing and the CNP processing which
can also be seen in Fig. 5. nb and ni are the block and the
in-block indices corresponding to the variable node n.

The VNP is implemented between lines 6 and 13. For each
variable node n the check node messages are gathered from
RAMp and added to LLR[n] according to equation (5). The
CNP will then substract the appropriate check node message
to implement equation (5) exactly. All iterations of the VNP
for loop can be executed simultaneously in parallel, therefore
the UNROLL directive is placed on this loop.

The CNPs are implemented between lines 15 and 22. Each
variable node message can at most affect 12 check nodes due
to the structure of the parity check matrix (see Fig. 2). The for
loop starting at line 16 performs the 12 check node updates.
The directive UNROLL is placed on this loop as well since
the operations can run in parallel.

To maximize throughput we place the directive PIPELINE
with iteration interval 1 on the variable loop (i.e. line 3). The
initiation interval constraint triggers a warning upon failure
to fulfill the requirement. Pipelining has to take into account
data dependencies between loop iterations. The CNP reads
and updates the entries of the RAM c. Pipelining can only be
realized if the write operation from an iteration of the loop is
executed before any read of the same RAM entry in subsequent
iterations. In such a case data dependecies between iterations
are false and this must be signalled to the Vivado HLS software
by using the DEPENDENCE directive on the RAM c variable
with parameter false. This dependence is only guaranteed to
be false if the check nodes are updated in the same order in all
blocks. This is made possible by the delay between the VNP
and CNP processing. In this way 27 v values are gathered and
passed for processing to the VNP (pseudocode lines 24 to 31)

3.3. HLS coding

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC
DOI: 10.37394/232019.2021.8.1 Ernest Scheiber, Guido H. Bruck, Peter Jung

E-ISSN: 1109-9577 3 Volume 8, 2021

in a group. The VNP can then use the vm in whatever order
the parity check matrix P dictates so that the check nodes are
always processed in ascending order.

The two RAMs: RAMp and RAM c containing the CNP
results are coded as double arrays of the type t check node:

t chck node RAMp[1 2] [2 7] ;
t chck node RAMc[1 2] [2 7] ;

The data type t check node is defined as:

t y p e d e f s t r u c t {
s c u i n t <7> min1 ;
s c u i n t <7> min2 ;
bool x o r a l l ;
sc bv<24> s i g n ;
s c u i n t <5> min idx ;

} t chck node ;

The programmer can take advantage of the C/C++ lan-
guages capabilities to organize data according to the require-
ments of the application. For data of arbitrary bit widths
Vivado HLS allows multiple approaches depending on the
language entry used i.e. C, C++ or SystemC. We have used the
SystemC data types (i.e. sc uint) which can be used with the
C++ compiler without the need to link the whole SystemC sim-
ulation kernel. By default Vivado HLS implements a separate
RAM for each member of the struct, to override this we place
the DATA PACK on RAMp and RAM c. RAMp and RAM c

are two-dimensional arrays, they are nevertheless implemented
as one memory block by HLS. As a single memory block
they do not allow the unrolling operations described before. To
split the memories into 12 separately addressable blocks the
ARRAY PARTITION directive is used on the two variables
RAMp and RAM c.

The decoder throughput is a function of the operating clock
frequency of the design fclk, the number of information bits
per frame Nbits, and the decoding latency for one frame in
number of clock cycles Nlatency. The decoding latency is
a function of the maximum number of iterations employed.
For three iterations the decoding latency is 2951 cycles. The
generated design files where used to implement the design on
a Spartan6 LX150T device. The resulting minimum period is
8.152 ns corresponding to an operating frequency of fclk=122
MHz. The number of information bits per frame Nbits is 324
since the decoder works for codes of length 648 and rate 1/2.
The resulting throughput is 13.4 Mbit/s.

The performance of the LDPC decoder has been deter-
mined through software Monte Carlo simulation of the HLS
C++ code. The simulation results are plotted in Fig. 6 for 3
and 5 decoding iterations.

As mentioned in section IV-A the decoder was imple-
mented on a Spartan6 LX150T device. The resource utilization
of the decoder is given in Table I.

−1 0 1 2 3 4 5 6 7
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 / dB

B
it
 E

rr
o
r

R
a
te

Uncoded BPSK

LDPC rate=1/2, 3 iterations

LDPC rate=1/2, 5 iterations

Fig. 6. Bit error rate of LDPC decoder

TABLE I. RESOURCE UTILIZATION FOR THE LDPC DECODER ON A
SPARTAN-6 LX150T FPGA

Resource Utilization Total Percentage
Slice registers 4272 184304 2

Slice LUTs 9072 92152 3
Total slices used 3232 23038 14

Block RAMs 56 268 20.9

In this paper we have presented a methodology to design
an LDPC decoder using High-Level Synthesis technology from
Xilinx. High-Level Synthesis is a powerful technology and we
have shown that non-trivial designs can be created using this
technology. The resulting decoder has a relatively low data
throughput. Improvements may be obtained by floorplanning,
since the longest path runs 82.2% through routing and only the
remaining 17.8% runs through logic. Different architectures
can also be investigated that have a higher level of parallelism
as described in [6].

[1] R. G. Gallager, Low Density Parity Check Codes. M.I.T. Press, 1963.
[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,

“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 30, no. 4, pp. 473–491, 2011.

[3] Xilinx, Vivado Design Suite User Guide High-Level Synthesis, Xilinx.
[4] “IEEE Standard for Information technology–Telecommunications and

information exchange between systems Local and metropolitan area
networks–Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std.
802.11-2012, 2012.

[5] J. Cho, N. Shanbhag, and W. Sung, “Low-power implementation of a
high-throughput LDPC decoder for IEEE 802.11n standard,” in Signal
Processing Systems, 2009. SiPS 2009. IEEE Workshop on, 2009, pp.
040–045.

[6] M. Peyic, H. Baba, E. Guleyuboglu, I. Hamzaoglu, and
M. Keskinoz, “A low power multi-rate decoder hardware for
IEEE 802.11n LDPC codes,” Microprocessors and Microsystems,
vol. 36, no. 3, pp. 159 – 166, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933111001281

4. Results and Performance
4.1. Decoder throughput

4.2. Bit error rate of LDPC decoder

4.3. Resource utilization

5. Conclusion

References

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC
DOI: 10.37394/232019.2021.8.1 Ernest Scheiber, Guido H. Bruck, Peter Jung

E-ISSN: 1109-9577 4 Volume 8, 2021

